
Development of SIS mixers for 1 THz

J. Zmuidzinas a, J. Kooi a, J. Kawamura a, G. Chattopadhyay a,

B. Bumble b , H. G. LeDuc b , and J. A. Stern b

"California Institute of Technology, 320-47, Pasadena CA 91125

bCenter for Space Microelectronics Technology, Jet Propulsion Laboratory, Pasadena CA 91108

ABSTRACT

SIS heterodyne mixer technology based on niobium tunnel junctions has now been pushed to frequencies over 1 THz,

clearly demonstrating that the SIS junctions are capable of mixing at frequencies up to twice the energy gap frequency

(4A/h). However, the performance degrades rapidly above the gap frequency of niobium (2A/h ,_ 700 GHz) due to

substantial ohmic losses in the on-chip tuning circuit. To solve this problem, the tuning circuit should be fabricated

using a superconducting film with a larger energy gap, such as NbN; unfortunately, NbN films often have a substantial

excess surface resistance in the submillimeter band. In contrast, the SIS mixer measurements we present in this paper

indicate that the losses for NbTiN thin fihns can be quite low.
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Figure 1. Our quasi-optical mixer design. Left: the optical configuration uses an antireflection-coated hyperhemi-

spherical silicon lens to focus the submillimeter radiation onto the SIS chip; Right: the SIS chip consists of a twin

slot antenna, a microstrip transformer, and a tuning circuit which uses two SIS junctions.

1. INTRODUCTION

The development of fabrication techniques for producing small area, high current density niobium superconductor-

insulator-superconductor (SIS) tunnel junctions integrated with thin-film microstrip tuning circuits has resulted

in a dramatic improvement in the sensitivity of heterodyne receivers in the 100-1000 GHz range. I In theory, the

sensitivity of SIS mixers can approach the quantum limit TN = hu/kB; in practice, the best results below the

700 GHz gap frequency of niobium are within a factor of 2-5 of this limit. The noise of these sensitive receivers is

actually often dominated by other factors such as optical losses, thermal noise, and IF amplifier noise, rather than

by the noise in the SIS mixer itself. The situation changes dramatically above 700 GHz, at which point the niobium

tuning circuits become very lossy since the photon energy is large enough to break Cooper pairs (hu > 2A). At

these frequencies, the performance is limited by the circuit losses, even when high conductivity normal metals such

as aluminum are used for the tuning circuit 2-5 in place of niobium. In this paper, we report the results of initial SIS

mixer measurements which use tuning circuits made with superconducting NbTiN fihns. The gap energy of NbTiN
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is larger than that of niobium by a factor of about 1.7, and appears to be a very promising low-loss material for SIS

circuits at frequencies up to 1.2 THz. These SIS mixers are being developed for use in heterodyne instruments for

the NASA/USRA airborne observatory SOFIA, 6 and for the ESA/NASA space mission FIRST. 7
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Figure 2. The equivalent circuit for our SIS mixer design. The junctions can be idealized as simple parallel

RC circuits. The physical spacing between the junctions determines the effective tuning inductance L. The slot

antennas and microstrip transformers can be considered to be generators with a complex source impedance Z,; the
two generators are 1800 out of phase due to the symmetry of the coupling to the twin-slot antenna.

2. QUASIOPTICAL MIXERS

The measurements were performed using our standard quasioptical mixer configuration (Fig. 1). In this design, a

planar twin slot antenna s is lithographically fabricated along with the SIS junctions on a silicon substrate, and then

this integrated "chip" is placed behind a hyperhemispherical lens which focuses the incoming radiation onto the
antenna. Because the dielectric constant of silicon is fairly high (er = 11.5), the twin slot antenna has a forward

efficiency of 90%. The reflection loss from the surface of the silicon lens is eliminated using a quarter-wavelength

anti-reflection coating 9 of alumina-loaded epoxy, which has an effective dielectric of about e_ = 4. The coating is

cut to the correct thickness on an optical diamond-turning machine. This method results in smooth, very rugged,

cryogenically cycleable coatings which have excellent optical performance.

One of the crucial aspects of our SIS mixer design is the tuning circuit which resonates the SIS junction capacitance

and matches the junction impedance to the slot antenna. We use a two-junction tuning circuit, 1° in which the two

junctions are separated by a section of microstrip line which serves as a tuning inductance (Fig. 2). This design has

been extensively characterized using niobium devices. H Fourier transform spectrometer (FTS) measurements of the
direct-detection frequency response of the niobium devices agree quite well with our circuit simulations. The circuit

simulator 1"_includes the complex frequency-dependent impedance of the slot antenna as well as the impedance and

propagation characteristics of the superconducting microstrip lines used in the transformers and tuning inductance.

The microstrip model s includes dispersion and fringing effects/a and incorporates the surface impedance as calculated

using the Mattis-Bardeen theory 14 in the local limit.

3, NORMAL METAL TUNING CIRCUITS

As shown in Fig. 3, a microstrip line made with normal-metal aluminum films has substantially less loss than a

corresponding niobium line at frequencies above 800 GHz. SIS mixers using aluminum microstrip circuits with
niobium tunnel junctions have in fact been demonstrated at frequencies over 1 THz _'-5 with noise temperatures

somewhat below 1000 K (DSB). Although these mixers are substantially less sensitive than SIS mixers below 700 GHz,

they are nonetheless the most sensitive heterodyne devices demonstrated to date at 1 THz. Not surprisingly, detailed

analyses of the mixer performance 3'4 indicate that the tuning circuit loss is the primary limitation on the performance.

Figure 4 shows the results of Fourier transform spectrometer measurements on a set of SIS devices with aluminum

mierostrip tuning circuits, a These results demonstrate that the tuning circuits have very broad resonances, around
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Figure 3. Calculated losses for thin-film microstrip transmission lines used in SIS mixer tuning circuits for various

conductors, including NbTiN. The microstrip width is 5 pro, and the dielectric is 400 nm SiO (e = 5.6).

400 GHz wide, which indicates a rather low Q-factor due to the loss in the aluminum lines. Furthermore, the

vertical scale in these plots gives the calculated RF coupling efficiency. At 1 THz, the coupling efficiency is only 20%,

indicating that 80% of the signal power received by the twin-slot antenna and injected into the microstrip circuit is

dissipated instead of being detected by the tunnel junction. Clearly, the performance of SIS mixers at 1 THz could

be improved dramatically if a low-loss conductor were available.

4. NBTIN TUNING CIRCUITS

4.1. NbN films and SIS mixer measurements

Niobium Nitride (NbN) is a very well known superconductor. NbN fihns can be fabricated in a variety of ways,

the most common method being reactive magnetron sputtering, and the resulting films display a large range in
characteristics. 15--'° In particular, the substrate temperature during deposition has a strong influence on the quality

of NbN films, as characterized by the normal-state resistivity p, or the magnetic penetration depth A. Normal-state

resistivities as low as 25 ttl'2 cm have been obtained, using heated (.-_ 350 C) silicon substrates coated with SiC buffer

layers. Is More typically, resistivities of 60/ID cm are obtained on heated MgO substrates. For unheated substrates,
resitivities over 140 pD cm are common, although lower values have been obtained in some casesJ 9 Low-resistivity

films most often show a decreasing resistance with temperature, while high-resistivity fihns show a constant or even
slightly increasing resistance with temperature. These variations in film properties are associated with variations in
the microstructure of the flms.

A number of measurements of the electrodynamic properties of NbN thin fihns have been reported. -'1-23 These

measurements, which were performed with a variety of techniques over different frequency ranges, are in reasonable

agreement if films with similar resistivities are compared. Empirically, the resistivity, critical temperature, and

magnetic penetration depth obey the BCS relation 21

A_ L Tc(K) J x 100nm (1)

For example, for T_ = 16K and p = 60pgtcm, the calculated penetration depth A = 2O0nm agrees well with the
measured value. -_4 Below the gap frequency, the surface reactance of a superconductor is inductive and is given by

X, = w/_0A. On the other hand, the surface resistance R, is difficult to predict, and is often not well described by
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Figure 4. Measured and calculated frequency response for a series of SIS mixer chips fabricated with normal metal
aluminum tuning circuits. Since we cannot calibrate the absolute response, the Fourier transform spectrometer (FTS)

measurements are scaled (vertically) to match the circuit simulations. Tile "notches" in the response above 1 THz
are due to absorption by residual water vapor in our nitrogen-flushed system.

simple theory. For thin film microstrip lines, which have dielectric thicknesses t < 2A, the surface resistance must

obey

R, << rio = o.2 a (2)

in order for the microstrip line to have low loss per wavelength. Here ri0 = 377 f_ and A0 is the free-space wavelength.

For all SIS mixer, in which a microstrip circuit tunes out the junction capacitance, the limit on the surface resistance
is more restrictive:

A 2rr A

R, << rio Ao Q - rl°cr (3)

where 7- = RNC is the time constant of the SIS junction and Q = wr = wRnC. For Nb/Al-oxide/Nb junctions with

RNA = 20 ft/-tm 2 and C, = 80 fFpm-:, and taking A = 200 nm, this limit is R, << 0.15 ft.

Kohjiro, Kiryu, and Shoji 23 found that the surface resistance R, of superconducting NbN in tile 200-1000 GHz
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bandwasstronglycorrelatedwith thenormal-stateresistivity:hightemperature,"epitaxially"grownfilmshada
surfaceresistancethat wasanorderof magnitudelowerthanunheated"polycrystalline"fihns. In fact,their data
indicatethatthesurfaceresistanceof thepolycrystallinefihnsrisesveryrapidlywithfrequency,andisquitelargeat
1THz,aroundR_ _ 0.5 Q. Unfortunately, SIS mixer devices are most often made with the polycrystalline fihns, since

high temperature fihu growth is usually not compatible with high current density SIS tunnel junction fabrication.
Also, it is difficult to obtain low resistivity "epitaxial" growth on top of the SiO or SiO2 dielectric fihns used for tile

microstrip transmission lines.

The performance of NbN SIS mixers have been measured by several groups. 2s-2s Recently, 27'2s noise temper-

atures around 200 K have been obtained at 300 GHz. SIS mixers using niobium devices achieve substantially lower

noise, by at least a factor of 4. Although excess loss in the NbN tuning circuits may be responsible for some of

this discrepancy, other factors such as optical losses, mixer design, and excess shot noise in NbN junctions 29 may

contribute as well. The performance of NbN SIS mixers appears to deteriorate rapidly at higher frequencies, 2s as

would be expected given the large surface resistance of polycrystalline NbN films. Measurements on a wider variety

of devices would be desirable, especially those fabricated with high quality films.
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Figure 5. Measurements of a twin-slot SIS mixer with a NbTiN ground plane, Nb/AIOx/Nbjunction, and a niobium

wiring layer. Left: The direct-detection frequency response measured with our FTS. A magnetic penetration depth

of A _ 175 nm is inferred for the NbTiN ground plane. Right: a heterodyne hot/cold load response naeasurement

at 638 GHz. The uncorrected receiver noise temperature is 110 K (DSB), which is comparable to the best results

obtained at this frequency with all-niobium SIS mixers.

4.2. NbTiN Films and SIS Tuning Circuits

An interesting alternative to NbN is niobium titanium nitride, Nbl__Ti×N. In fact, superconducting NbTiN films
were produced thirty years ago in an early study of NbN film deposition. 3° More recently, NbTiN films have been

investigated for use in RF cavities for particle accelerators. 31 This study showed that for x _< 0.4, the NbTiN films

have critical temperatures similar to NbN, or T¢ _ 16 K, which is substantially higher than niobium (Tc = 9.2 K).

However, the normal-state resisivity of the films drops rapidly as the titanium fraction x is increased: NbTiN films

grown on unheated substrates often have similar (or lower) resistivity than NbN fihns grown on heated substrates.
This might have been expected, since the resistivity of TiN films is quite low. 32 Similar results were obtained

independently at JPL during the process of characterizing and optimizing NbTiN film deposition. In addition,

tunnel junctions coupled to NbTiN microstrip resonators were fabricated at JPL, which showed resonant features at

bias voltages in excess of 2 inV. These measurements indicated that the loss of NbTiN at 1 THz should be quite low,

and encouraged us to attempt SIS mixer measurements using this material. Here we give a short summary of these

measurements; more details can be found in the paper of Kooi et al. 33

4.2.1. SIS mixers with NbTiN ground planes

As a first step, we fabricated and tested twin-slot devices which used NbTiN fihns as the ground plane, along

with Nb/Al-oxide/Nb junctions and a Nb wiring layer. We used our existing lithography masks, which had been
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designedfor niobium,li Becausetile magneticpenetrationdepthof NbTiNismuchlargerthanfor niobium,the
tuninginductanceis larger,andthe resonantfrequencyof thecircuit is reduced.In anattemptto compensate
for thiseffect,weselecteda devicenominallydesignedfor 550GHzbut whosejunctionareas(1#m2)weremuch
smallerthanthenominalareafor thedesign(1.7/ml2). As shown in Figure 5, the resonance frequency actually

was shifted above 550 GHz, since the small junction areas overcompensated for the increase in penetration depth.

A very low value of 175 nm was obtained for the penetration depth of NbTiN by matching the circuit simulations

to the FTS data. In addition, heterodyne measurements at 638 GHz, near the peak of the FTS response, gave all

uncorrected noise temperature of 110 K (DSB), which is certainly an impressive result at this frequency. This low

noise temperature indicates that the loss of the NbTiN film must be quite low, although it is difficult to give a useful

quantitative estimate of the loss from the noise temperature alone.
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Figure 6. Measured and calculated frequency responses for SIS tuning circuits using NbTiN ground planes and

wiring layers, and NbTiN/MgO/NbTiN junctions. Left: The narrow width of the resonance implies a limit of 0.03 f2

to the excess surface resistance at 500 GHz. Right: The resonance width remains quite narrow at 800 GHz. At
present, we do not fully understand the origin of the secondary peak at 570 GHz.

4.2.2. FTS measurements of all-NbTiN devices

The positive results obtained with NbTiN ground planes encouraged us to fabricate and measure devices which

use NbTiN in the wiring layer as well as the ground plane. In general, it is substantially more difficult to grow

a high-quality film for the wiring layer, since the substrate cannot be heated significantly without damaging the
tunnel junctions, and since the film is grown on top of the SiO film used for the junction passivation and microstrip

dielectric material. Figure 6 shows some representative results. The evidence that the loss of the NbTiN films is

low in these devices comes primarily from the shape of the measured frequency response of SIS tuning circuits.

Depending on the design and the fabrication parameters, the tuning circuit may produce a high-Q resonance, whose

width provides direct information on the loss of the NbTiN material. As is clear from Figures 4 and 6, the NbTiN
SIS circuits have much narrower resonances than the circuits with normal-metal aluminum microstrip lines. Thus,

we can be quite certain that the losses in the NbTiN films are substantially lower than for aluminum films in the

500-800 GHz frequency range. At 500 GHz, we estimate that any excess surface resistance in the NbTiN films cannot
exceed 0.0312, which is substantially below the surface resistance measured at this frequency by Kohjiro et al? 3 for

unheated polycrystalline NbN films. At 800 GHz, our simulations indicate that the excess surface resistance of the

wiring layer is well below 0.1 f_ if we assume that the ground plane is essentially lossless.

Figure 6 also indicates some of the challenges we face. The resonances are often shifted down from the design

frequency due to variations in the NbTiN film deposition process. Compared to our best fihns, a non-ideal film will

generally have a lower critical temperature along with a larger normal-state resistivity. According to equation 1, both

of these effects result in an increase in the penetration depth A. In fact, as shown in Fig. 6, the NbTiN penetration

depth can be quite large (350 ran) when the NbTiN deposition conditions are not optimum. Additionally, in some

cases the measured frequency responses show secondary peaks at lower frequencies, which are not predicted by our
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simulations.Wesuspectthat.thesemayberelatedto modificationsthat weremadein thedesignof theantenna
couplingstubsandtheIF outputline. Finally,the I-V curves of the devices often show series weak-link behavior

at high currents. These weak links are most likely produced in the region where the NbTiN wiring layer crosses

over the edges of the ground plane at the slot antenna. We have some evidence from SIS heterodyne testing that

these weak links are capable of absorbing RF radiation from the antenna, which reduces the LO pump level and the

heterodyne response, but does not affect the width of the direct-detection resonance measured with tile FTS.
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Figure 7. 600 GHz heterodyne measurements on SIS mixers using NbTiN ground planes and wiring layers. Left:

A device with NbTiN/MgO/NbTiN junctions; Right: A device with Nb/AIN/NbTiN junctions.

4.2.3. SIS mixers with NbTiN/MgO/NbTiN and Nb/A1N/NbTiN junctions

We have obtained good mixer results using SIS devices with all-NbTiN tuning circuits at frequencies around 600 GHz

(Fig. 7), with noise temperatures around 200 h: (DSB). Devices with three different junction types have been fabri-

cated: Nb/AI-Oxide/Nb, Nb/AIN/NbTiN, and NbTiN/MgO/NbTiN. Figure 7 shows typical pumped and unpumped
I-V curves for the junctions with AIN and MgO tunnel barriers. The Nb/AIN/NbTiN devices are especially promis-

ing since they combine the sharp I-V behavior usually associated with niobium junctions but have a substantially

larger gap voltage, around 3.5 mV, compared to 2.9 mV for niobium. This is particularly important for mixers

operating near 1 THz, since the 0.6 mV increase in gap voltage translates into a 1.2 mV increase in the available

voltage bias range (although a decrease in the gap voltage due to heating by LO-injected quasiparticles is apparent

in Figure 7). We hope to extend our mixer measurements to 800 GHz in the near future.

5. CONCLUSIONS

Our measurements indicate that NbTiN films will allow very low noise SIS nfixers to be developed for frequencies

near 1 THz. At the minimum, we can expect a factor of two improvement over existing 1 THz SIS mixers, by using

high quality NbTiN ground planes and aluminum wiring layers. This approach should yield noise temperatures

around 400 K (DSB) 2 at 1 THz. Low loss all-NbTiN devices may offer even better performance, perhaps as low as

200 K (DSB).
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